Friday 9 June 2017

Umzugsdurchschnitt Tf 15


Moving Averages (MAs) gehören zu den am häufigsten verwendeten Indikatoren in Forex. Sie sind einfach einzustellen und leicht zu interpretieren. Sprechen einfache, gleitende Durchschnitte messen einfach die durchschnittliche Verschiebung des Preises während eines bestimmten Zeitraums. Es glättet die Preisdaten, um Markttrends und Tendenzen zu sehen. So verwenden Sie Moving Averages Moving Average ist ein Trendindikator. Neben seiner offensichtlichen einfachen Funktion hat ein Moving Average viel mehr zu erzählen: Im Forex gleitenden Durchschnitt wird verwendet, um zu bestimmen: 1. Preisrichtung - up, down oder seitwärts. 2. Preisstandort - Handelsvorurteil: über Gleitender Durchschnitt - Kauf, unter Umzugsdurchschnitt - Verkauf. 3. Preisdynamik - der Winkel des beweglichen Mittels: steigender Winkel - Impuls hält, fallender Winkel - Impuls pausiert oder stoppt. 4. Preisunterstützungsniveaus. Arten von Moving Averages SMA - Simple Moving Average - zeigt den durchschnittlichen Preis für einen bestimmten Zeitraum. EMA - Exponential Moving Average - gibt den aktuellsten Daten Vorrang und reagiert so schneller auf Preisänderungen als Simple Moving Average. WMA - Weighted Moving Average - legt den Schwerpunkt auf die aktuellsten Daten auf weniger - auf ältere Daten. Die meisten gängigen Einstellungen für Moving Averages in Forex 200 EMA und 200 SMA 100 SMA 50 SMA 34 SMA 20 EMA und 20 SMA 10 EMA und 10 SMA Versuchen Sie und testen Sie und wählen Sie dann Ihre Lieblings-Moving Averages. Moving Average Video Presentation Andere Versionen von Moving Averages Neben traditionellen EMA-, SMA - und WMA-Indikatoren gibt es für alle Forex-Händler mehrere andere Arten von MAs: Copyright-Kopie Forex-Indikatoren Displaced Moving Average (DMA) ist Ihr regulärer Moving-Durchschnitt mit nur dem Unterschied Es wurde in der Zeit verschoben (entweder rückwärts oder vorwärts). Um DMA zu machen, addieren wir den Shift-Wert: Ein negativer Wert würde eine Verschiebung rückwärts bedeuten - damit dein Moving-Durchschnitt hinter dem Preis N Anzahl der Intervalle bleibt. Solche Displaced Moving Durchschnitt ist in der Lage, den Preis in einem Trend besser zu halten. Ein positiver Wert würde eine Verschiebung nach vorn verursachen - ein solcher Displaced Moving Durchschnitt wird zu einem führenden Indikator, der in gewissem Maße dazu beiträgt, die nächsten Moves zu antizipieren. Ich habe 5ema, 10ema und 20ema benutzt. Und wenn die 5ema über beide 10und20ema kreuzen. Ich gehe lange und umgekehrt. Bitte sag mir, es ist okay Cos ist neu im Forexhandel. Awooooooooooooo Es ist sicher Ok. Es ist eine bekannte Technik im Handel. Kann mir jemand sagen, was der beste bewährte gleitende Durchschnitt auf deiner Erfahrung basiert Hängt davon ab, was du willst. Schnellere Trends - 20 SMA, mittlere Trends - 50 SMA, längere Trends - 100 oder 200 SMA. Wenn du den Moving-Durchschnitt nicht nur für die Suche nach Trends nutzen willst, sondern dir auch schnell Schnellsignale geben wirst, dann brauchst du eine kleinere MA - 10 EMA, die am meisten benutzt wird. Hallo, Im jeffryloo deine Erklärung ist sehr einfach zu verstehen. Ich gebe dir 5 Start. Wie ich benutze ich die 50.100, amp 200 MAs aber mach die 100 exponentiell. Die 50 bietet tolle Trend-Info und alle drei bieten hervorragende dynamische Unterstützung Widerstand. Ich weiß, das mag verrückt klingen, aber für mich ist der beste kurzfristige Durchschnitt ein Kanal aus dem 8 geglätteten MA hoch und der 8 geglättete MA niedrig. Dies bietet eine ausgezeichnete Trendrichtung und hilft, Sie auf die seitliche Bewegung aufmerksam zu machen und bei der Ermittlung des Ausbruchs zu helfen. Dies bietet auch eine überlegene dynamische Unterstützung. Offensichtlich ist dies nicht auf ein Kreuz verlassen, sondern mehr auf Preis-Aktion in Bezug auf den Kanal, der sehr mächtig ist, wenn mit ein paar Indikatoren wie RSI amp ATR kombiniert. Ich mache ihnen jede andere Farbe, nur um es einfach zu machen, die hohe und niedrige des Kanals zu erkennen. Vielen Dank für die Bereitstellung von Indikatoren und Erklärungen schwer zu finden irgendwo anders. Du hast mir mehr geholfen, als du dir vorstellen kannst. Kann das Management sagen, m oder jemand mit kompetenten Forex Trading Erfahrung. Was sind die besten entweder EMA oder SMA und Zahlen für den Handel der 15 Minuten Charts mit einer langfristigen 68 Stunden bis zu 12 Stunden Aussicht Markt Richtung. Plus, wenn Sie auch besser erklären könnte genau das, was gemeint ist durch die oben genannten Blog-Post in Bezug auf die Screenshot der Verschiebung Moving Average (DMS) Einstellungen bedeuten. Dh: Ist es für die Zeitrahmen-Chart, die man handelt, und die jeweilige Anzahl von Kerzenstöcken 3 auf dem Markt (vor dem aktuellen Marktpreis) und bzw. der entsprechenden negativen -3 Anzahl der Kerzenstäbe hinter dem aktuellen Marktpreis relevant. Vielen Dank John, wenn du eine glattere MA - SMA wünschst, wäre besser. Wenn Sie schneller benötigen MA - nehmen Sie EMA. Smoothing out hilft, einige falsche Spikes zu vermeiden, aber es verzögert auch Ein - und Ausgangssignale. Während mit EMA youll viel schneller Reaktion auf Preisänderungen haben, aber es wird mit einer erhöhten Rate von falschen Signalen kommen. Das ist der Unterschied. Alles hängt von einem Handelssystem ab, bei dem sowohl EMA als auch SMA effektiv für den Handel auf 15 min TF eingesetzt werden können. -10 Shift für den Moving-Durchschnitt verschiebt einfach die Indikator X Anzahl der Balken auf dem Chart für den aktuellen Zeitrahmen: minus zehn würde bedeuten, dass die Verschiebung 10 bar hinter ist, plus 10 würde es 10 Balken nach vorne verschieben. Danke für deinen tollen Job Hi. Ich habe gerade eine schnelle frage Ist es möglich, einen gegebenen Moving Average negativ zu verschieben und immer noch die Linie (MA) auf der aktuellen Kerze zu zeigen, anstatt hinter der Anzahl der vertriebenen Kerzenwert zu liegen. Ich denke nicht, dass dies auf MT4 möglich ist, wenn ja, gibt es einen separaten Indikator, der genau das tun kann Danke und ich hoffe, meine Frage ist klar genugGASE, FLÜSSIGKEITEN UND SOLIDS Anwendung des Partikelmodells für die drei Staaten von Materie Partikelmodellen, Erläuterung der Eigenschaften von Gasen, Flüssigkeiten und Feststoffen Doc Browns Chemie KS4 Wissenschaft GCSEIGCSE Revision Anmerkungen Vergleich der Eigenschaften von GASES, FLÜSSIGKEITEN UND SOLIDS Zustände der Materie Gasflüssigkeiten feste Revisionshinweise Teil 1 Das kinetische Partikelmodell und Beschreibung und Erklärung der Eigenschaften von Gasen, Flüssigkeiten Und Festkörper, Zustandsänderungen und Lösungen (Abschnitte 1a bis 3d) Sie sollten wissen, dass die drei Zustände der Materie fest, flüssig und gas sind. Schmelzen und Einfrieren findet am Schmelzpunkt statt, Kochen und Verdichten findet am Siedepunkt statt. Die drei Zustände der Materie können durch ein einfaches Modell dargestellt werden, in dem die Teilchen durch kleine feste Kugeln dargestellt werden. Partikeltheorie kann helfen, das Schmelzen, Kochen, Einfrieren und Kondensieren zu erklären. Die Menge an Energie, die benötigt wird, um den Zustand von Festkörper zu Flüssigkeit und von Flüssigkeit zu Gas zu ändern, hängt von der Stärke der Kräfte zwischen den Teilchen der Substanz und der Natur der beteiligten Teilchen ab, hängt von der Art der Bindung und der Struktur der Substanz ab. Je stärker die Kräfte zwischen den Partikeln sind, desto höher der Schmelzpunkt und der Siedepunkt der Substanz. Für Details siehe Struktur und Bonding Notes. Der physikalische Zustand, den ein Material annimmt, hängt von seiner Struktur, Temperatur und Druck ab. Staatssymbole, die in Gleichungen verwendet werden: (g) Gas (l) flüssige (wässrige Lösung) wässrige Lösung (n) feste wässrige Lösung bedeutet etwas, das in Wasser aufgelöst ist. Die meisten Diagramme der Teilchen auf dieser Seite sind 2D-Darstellungen ihrer Struktur und ihres Zustands BEISPIELE DER DREI PHYSIKALISCHEN STAATEN VON MATTERGASEN zB Die Luftmischung um uns herum (einschließlich des für die Verbrennung benötigten Sauerstoffs) und des Hochdruckdampfes im Kessel und der Zylinder der Dampflokomotive. Alle Gase in der Luft sind unsichtbar, farblos und transparent. Beachten Sie, dass der Dampf, den Sie außerhalb eines Kessels oder einer Dampflokomotive sehen, tatsächlich feine Flüssigkeitströpfchen von Wasser ist, die aus dem ausgestoßenen Dampfgas gebildet wird, das sich kondensiert, wenn es auf die kalte Luft trifft, die Zustandsänderung von Gas zu Flüssigkeit (gleiche Wirkung bei Nebel und Nebelbildung) . FLÜSSIGKEITEN z. B. Wasser ist das häufigste Beispiel, aber so sind, Milch, heiße Butter, Benzin, Öl, Quecksilber oder Alkohol in einem Thermometer. SOLIDS z. B. Stein, alle Metalle bei Raumtemperatur (außer Quecksilber), Gummi von Stiefel und die Mehrheit der physischen Gegenstände um dich herum. Tatsächlich sind die meisten Gegenstände nutzlos, es sei denn, sie haben eine feste Struktur Auf dieser Seite werden die grundlegenden physikalischen Eigenschaften von Gasen, Flüssigkeiten und Feststoffen in Form von Struktur, Partikelbewegung (kinetische Partikeltheorie), Auswirkungen von Temperatur - und Druckänderungen und Partikelmodellen beschrieben Verwendet, um diese Eigenschaften und Eigenschaften zu erklären. Hoffentlich werden Theorie und Tatsache zusammenpassen, um den Schülern ein klares Verständnis der materiellen Welt um sie in Bezug auf Gase, Flüssigkeiten und Feststoffe zu geben, die als die drei physischen Zustände der Materie bezeichnet werden. Die Zustandsänderungen, die als Schmelzen, Fixieren, Kochen, Verdampfen, Kondensieren, Verflüssigen, Einfrieren, Verfestigen, Kristallisieren bekannt sind, werden mit Partikelmodell-Bildern beschrieben und erklärt, um das Verständnis zu verstehen. Es gibt auch eine Erwähnung von mischbaren und nicht mischbaren Flüssigkeiten und erklärt die Begriffe flüchtig und Volatilität bei der Anwendung auf eine Flüssigkeit. Diese Revisionshinweise zu den Zuständen der Materie sollten sich für die neuen AQA, Edexcel und OCR GCSE (91) Chemiewissenschaftlichen Kurse als nützlich erweisen. Subindex für Teil I Abschnitte (diese Seite): 1.1. Die drei Zustände der Materie sind fest, flüssig und gas. Entweder können Schmelzen und Gefrieren am Schmelzpunkt stattfinden, während Kochen und Kondensieren am Siedepunkt stattfinden. Verdampfen kann bei jeder Temperatur von einer flüssigen Oberfläche stattfinden. Sie können die drei Zustände der Materie mit einem einfachen Partikelmodell darstellen. In diesen Modilen werden die Partikel durch kleine feste Sphären dargestellt (Elektronenstruktur wird ignoriert). Kinetische Partikeltheorie kann helfen, Zustandsänderungen wie Schmelzen, Kochen, Einfrieren und Kondensieren zu erklären. Die Energiemenge, die benötigt wird, um den Zustand von Festkörper zu Flüssigkeit oder von Flüssigkeit zu Gas zu ändern, hängt von der Stärke der Kräfte zwischen den Teilchen der Substanz ab. Diese Kräfte können relativ schwache intermolekulare Kräfte (intermolekulare Bindung) oder starke chemische Bindungen (ionisch, kovalent oder metallisch) sein. Die Art der beteiligten Teilchen hängt von der Art der chemischen Bindung und der Struktur der Substanz ab. Je stärker die Anziehungskräfte zwischen den Partikeln sind, desto höher der Schmelzpunkt und der Siedepunkt der Substanz WAS SIND DIE DREI STAATEN DER MATERIAL Die meisten Materialien können einfach als Gas, Flüssigkeit oder Feststoff beschrieben werden. WARUM SIND SIE WIE SIE WAS SIE SIND Nur zu wissen, ist nicht genug, wir brauchen eine umfassende Theorie der Gase, die ihr Verhalten erklären und Vorhersagen darüber machen können, was passiert, z. B. Wenn wir Temperatur oder Druck ändern. WIE KÖNNEN WIR ERKLÄREN, WIE SIE HABEN Wir brauchen ein theoretisches Modell, z. B. Partikel-Theorie, die durch experimentelle Beweise unterstützt wird. KANN PARTIKEL MODELLE HELFEN UNS VERSTEHEN IHRE EIGENSCHAFTEN UND EIGENSCHAFTEN WARUM IST WICHTIG, DIE EIGENSCHAFTEN VON GASEN, FLÜSSIGKEITEN UND SOLIDEN ZU KENNEN Es ist wichtig, in der chemischen Industrie über das Verhalten von Gasen, Flüssigkeiten und Feststoffen in chemischen Prozessen, z. B. Was passiert mit den verschiedenen Zuständen mit Temperatur - und Druckänderungen. Was ist die KINETISCHE PARTIKEL-THEORIE von Gasen, Flüssigkeiten und Festkörpern Die kinetische Teilchentheorie der Zustände der Materie beruht auf der Idee aller Materialien, die als sehr sehr winzige Teilchen existieren, die einzelne Atome oder Moleküle sein können und deren Wechselwirkung auch Durch Kollision in Gasen oder Flüssigkeiten oder durch Vibration und chemische Bindung in Festkörpern. KÖNNEN WIR MACHEN, DIE AUF IHRE EIGENSCHAFTEN AUFGEFÜHRT WERDEN Diese Seite führt allgemeine physikalische Beschreibungen von Substanzen in das einfachste physikalische (nichtchemische) Klassifizierungsniveau ein, d. h. es ist ein Gas, ein flüssiger oder ein Feststoff. ABER, diese Webseite stellt auch Teilchenmodelle vor, in denen ein kleiner Kreis ein Atom oder ein Molekül darstellt, d. h. ein bestimmtes Teilchen oder eine einfachste Einheit einer Substanz. Dieser Abschnitt ist ziemlich abstrakt in einer Weise, weil Sie über Partikel reden, die Sie nicht einzeln sehen können, Sie nur das Schüttgut und seinen physischen Charakter und Eigenschaften. Gibt es BESCHRÄNKUNGEN zum Partikelmodell Die Partikel werden als einfache unelastische Sphären behandelt und verhalten sich einfach wie kleine Snooker-Kugeln, die herumfliegen, nicht ganz richtig, aber sie fliegen herum zufällig non-stop Obwohl die Partikel als harte Sphären und unelastisch angenommen werden , In Wirklichkeit sind sie alle Arten von Formen und verdrehen und beugen auf Kollision mit anderen Partikeln und wenn sie reagieren, teilen sie sich in Fragmente, wenn Bindungen brechen. Das einfache Modell nimmt keine Kräfte zwischen den Partikeln an, unwahr, das Modell berücksichtigt wenig die Kräfte zwischen den Partikeln, auch bei Gasen bekommt man sehr schwache intermolekulare Kräfte. Das Teilchenmodell berücksichtigt nicht die tatsächliche Größe der Teilchen, z. B. Ionenmoleküle können in der Grße z. B. Vergleiche ein Ethenmolekül mit einem Poly (ethen) - Molekül Die Räume zwischen den Partikeln WAS IST DER GASEOUS-STAAT DER MATERIE WAS SIND DIE EIGENSCHAFTEN EINES GASES WIE SIND GASEOUS PARTICLES BEHAVE Wie erklärt die kinetische Partikel-Theorie der Gase die Eigenschaften von Gasen Hat keine feste Form oder Volumen, sondern breitet sich immer aus, um jeden Behälter zu füllen - die Gasmoleküle werden in jeden verfügbaren Raum diffundieren. Es gibt fast keine Anziehungskräfte zwischen den Partikeln, so dass sie völlig frei von einander sind. Die Teilchen sind weit beabstandet und verstreut, wenn sie sich schnell zufällig im gesamten Behälter bewegen, so dass es keine Ordnung im System gibt. Die Teilchen bewegen sich linear und schnell in alle Richtungen. Und häufig zusammenstoßen und die Seite des Behälters. Die Kollision von Gaspartikeln mit der Oberfläche eines Behälters bewirkt einen Gasdruck. Wenn wir von einer Oberfläche abprallen, üben sie eine Kraft aus. Mit zunehmender temperatur Die Teilchen bewegen sich schneller, wenn sie kinetische Energie gewinnen. Erhöht sich die Kollisionsrate zwischen den Partikeln selbst und der Behälteroberfläche und dies erhöht den Gasdruck zB in einer Dampflokomotive oder das Volumen des Behälters, wenn er zB wie ein Ballon expandieren kann. Gase haben eine sehr geringe Dichte (Licht), da die Partikel im Container (Dichtemassenvolumen) so weit voneinander entfernt sind. Dichte Ordnung: feste gt Flüssigkeit gtgtgt Gase Gase fließen frei, weil es keine wirksamen Anziehungskräfte zwischen den Molekülen der gasförmigen Teilchen gibt. Einfache Strömungsreihenfolge Gase gt Flüssigkeiten gtgtgt Feststoffe (keine wirkliche Strömung in festem, wenn Sie es nicht pulverisieren) Wegen dieser Gase und Flüssigkeiten werden als Flüssigkeiten beschrieben. Gase haben keine Oberfläche. Und keine feste Form oder Volumen. Und wegen des Mangels an Partikel-Anziehung, sie immer ausbreiten und füllen jeden Container (so Gas Volumen Container Volumen). Gase werden aufgrund des leeren Raumes zwischen den Partikeln leicht komprimiert. Einfache Kompressionsordnung. Gase gtgtgt Flüssigkeiten gt Feststoffe (fast unmöglich, einen Feststoff zu komprimieren) Gasdruck Wenn ein Gas in einem Behälter eingeschlossen wird, werden die Partikel einen Gasdruck erzeugen und ausüben, der in Atmosphären (atm) oder Pascal (1,0 Pa 1,0 Nm 2) gemessen wird, Druck ist Kraft, dh die Wirkung aller Kollisionen auf der Oberfläche des Behälters. Der Gasdruck wird durch die Kraft verursacht, die durch Millionen von Stößen der winzigen einzelnen Gaspartikel an den Seiten eines Behälters erzeugt wird. Wenn beispielsweise die Anzahl der gasförmigen Partikel in einem Behälter verdoppelt wird, wird der Gasdruck verdoppelt, da die Verdoppelung der Anzahl der Moleküle die Anzahl der Stöße auf der Seite des Behälters verdoppelt, so dass auch die Gesamtschlagkraft pro Flächeneinheit verdoppelt wird. Diese Verdoppelung der Partikel wirkt auf die Verdoppelung des Druckes ist in den beiden folgenden Diagrammen dargestellt. Wenn das Volumen eines versiegelten Behälters konstant gehalten wird und das Gas im Inneren auf eine höhere Temperatur erhitzt wird, erhöht sich der Gasdruck. Der Grund dafür ist, dass, wenn die Partikel erhitzt werden, sie kinetische Energie gewinnen und sich im Durchschnitt schneller bewegen. Deshalb kollidieren sie mit den Seiten des Behälters mit einer größeren Kraft des Aufpralls. So dass der Druck erhöht. Es gibt auch eine größere Häufigkeit der Kollision mit den Seiten des Behälters, aber dies ist ein kleiner Faktor im Vergleich zu der Wirkung der erhöhten kinetischen Energie und der Zunahme der durchschnittlichen Kraft des Aufpralls. Daher ist eine feste Menge an Gas in einem versiegelten Behälter mit konstantem Volumen, je höher die Temperatur, desto größer der Druck und je niedriger die Temperatur, desto geringer der Druck. Für Gasdrucktemperaturberechnungen siehe Teil 2 CharlessGayLussacs Gesetz Wenn sich das Behältervolumen ändern kann, erweitern sich die Gase aufgrund der fehlenden Partikelanziehung leicht auf die Erwärmung und ziehen sich beim Abkühlen leicht ab. Beim Erhitzen gewinnen Gasteilchen kinetische Energie. Schneller bewegen und die Seiten des Containers häufiger treffen. Und deutlich, sie treffen mit einer größeren Kraft. Je nach Behältersituation erhöht sich entweder der Druck oder das Volumen oder umgekehrt beim Abkühlen. Anmerkung: Es ist das Gasvolumen, das NICHT die Moleküle ausdehnt, sie bleiben gleich groß Wenn es keine Volumenbegrenzung gibt, ist die Expansion beim Erwärmen für Gase viel größer als Flüssigkeiten oder Feststoffe, da es keine signifikanten Anziehungskraft zwischen gasförmigen Partikeln gibt. Die erhöhte durchschnittliche kinetische Energie wird den Gasdruck steigen lassen, und so wird das Gas versuchen, sich im Volumen zu erweitern, wenn es z. B. Ballons in einem warmen Raum sind deutlich größer als der gleiche Ballon in einem kalten Raum Für Gasvolumentemperaturberechnungen siehe Teil 2 CharlessGayLussacs Gesetz DIFFUSION in Gases: Die natürliche schnelle und zufällige Bewegung der Partikel in alle Richtungen bedeutet, dass sich Gase leicht ausbreiten oder diffundieren. Die Nettobewegung eines bestimmten Gases wird in der Richtung von niedrigerer Konzentration zu einer höheren Konzentration, dem sogenannten Diffusionsgradienten, liegen. Die Di-Fusion fährt fort, bis die Konzentrationen im gesamten Gülle-Behälter gleichmäßig sind, aber alle Teilchen bewegen sich mit ihrer immer vorhandenen kinetischen Energie. Diffusion ist in Gasen schneller als Flüssigkeiten, wo es mehr Platz für sie gibt (nachstehend illustriert) und die Diffusion ist Vernachlässigbar in Feststoffen durch die enge Packung der Partikel. Diffusion ist verantwortlich für die Ausbreitung von Gerüchen auch ohne Luftstörung z. B. Verwendung von Parfüm, Eröffnung eines Glas Kaffee oder der Geruch von Benzin um eine Garage. Die Geschwindigkeit der Diffusion nimmt mit zunehmender Temperatur zu, da die Teilchen kinetische Energie gewinnen und sich schneller bewegen. Andere Beweise für zufällige Partikelbewegungen einschließlich Diffusion. Wenn Rauchpartikel unter einem Mikroskop betrachtet werden, scheinen sie herum zu tanzen, wenn sie mit einem Lichtstrahl bei 90 o zur Betrachtungsrichtung beleuchtet werden. Dies liegt daran, dass die Rauchpartikel durch reflektiertes Licht und Tanz aufgrund der Millionen von zufälligen Hits aus den schnell bewegten Luftmolekülen auftauchen. Dies wird als Brownsche Bewegung bezeichnet (siehe unten in Flüssigkeiten). Zu jedem gegebenen Zeitpunkt werden die Hits nicht gleich sein, so dass die Rauchpartikel ein größeres Bashing in einer zufälligen Richtung bekommen. Ein zwei gasförmiges Molekül-Diffusionsexperiment ist oben dargestellt und wird nachfolgend erläutert. Ein langes Glasrohr (24 cm Durchmesser) wird an einem Ende mit einem in konz. Salzsäure, die mit einem Gummi-Spund (für Gesundheit und Sicherheit) versiegelt ist, und der Schlauch wird perfekt gehalten, in einer horizontalen Position festgeklemmt. Ein ähnlicher Stecker von conc. Ammoniak-Lösung wird am anderen Ende platziert. Die getränkten Baumwollwollstopfen geben Dämpfe von HCl bzw. NH 3 ab, und wenn das Röhrchen trotz des Mangels an Röhrenbewegung ungestört und horizontal bleibt, z. B. KEIN Schütteln, um zu mischen und die Abwesenheit der Konvektion, eine weiße Wolke bildet ungefähr 1 3 rd entlang von der conc. Salzsäure. Erläuterung: Was passiert, sind die farblosen Gase, Ammoniak und Chlorwasserstoff, diffundieren das Röhrchen und reagieren auf feine weiße Kristalle des Salzes Ammoniumchlorid. Ammoniak Chlorwasserstoff gt Ammoniumchlorid NH 3 (g) HCl (g) gt NH 4 Cl (s) Beachten Sie die Regel: Je kleiner die Molekülmasse ist, desto größer ist die durchschnittliche Geschwindigkeit der Moleküle (aber alle Gase haben die gleiche mittlere kinetische Energie Bei gleicher Temperatur). Je kleiner die molekulare Masse, desto schneller diffundiert das Gas. z. B. M r (NH 3) 14 1x3 17 Bewegt sich schneller als M r (HCl) 1 35,5 36,5 UND das ist der Grund, warum sie sich dem HCl-Ende des Röhrchens näherten. Das Experiment ist nicht nur ein Beweis für die Molekülbewegung. Es ist auch ein Beweis dafür, dass sich Moleküle unterschiedlicher Molekülmassen mit unterschiedlichen Geschwindigkeiten bewegen. Für eine mathematische Behandlung siehe Grahams Gesetz der Diffusion Ein farbiges Gas, schwerer als Luft (größere Dichte), wird in das untere Gasglas gelegt und ein zweites Gasgefäß mit geringerer Dichte farbloser Luft wird über eine mit einer Glasabdeckung getrennte Luft gelegt. Diffusionsexperimente sollten bei konstanter Temperatur eingeschlossen werden, um Störungen durch Konvektion zu minimieren. Wenn die Glasabdeckung entfernt wird, dann diffundieren die farblosen Luftgase in das gefärbte braune Gas und (ii) Brom diffundiert in die Luft. Die zufällige Partikelbewegung, die zum Mischen führt, kann nicht auf Konvektion zurückzuführen sein, weil das dichtere Gas am Boden beginnt. Es ist kein Schütteln oder andere Mischmittel erforderlich. Die zufällige Bewegung beider Lose Partikel reicht aus, um sicherzustellen, dass beide Gase schließlich durch Diffusion vollständig miteinander vermischt werden (ineinander verteilt). Dies ist ein deutlicher Beweis für die Diffusion aufgrund der zufälligen kontinuierlichen Bewegung aller Gasteilchen und anfangs die Nettobewegung eines Partikeltyps von einer höheren zu einer niedrigeren Konzentration (nach einem Diffusionsgradienten). Wenn es vollständig gemischt ist, wird keine weitere Farbänderungsverteilung beobachtet, aber die zufällige Partikelbewegung wird fortgesetzt Siehe auch andere Hinweise im Flüssigkeitsabschnitt nach dem Partikelmodell für das Diffusionsdiagramm unten. Ein Partikelmodell der Diffusion in Gasen. Stellen Sie sich den Diffusionsgradienten von links nach rechts vor, denn die grünen Partikel, die den blauen Partikeln auf der linken Seite hinzugefügt wurden, Für die grünen Teilchen ist die Netzmigration von links nach rechts und wird in einem versiegelten Behälter fortgesetzt, bis alle Teilchen gleichmäßig im Gasbehälter verteilt sind (wie abgebildet). Die Diffusion ist bei Gasen im Vergleich zu Liquidisierungslösungen schneller, da zwischen den Partikeln mehr Platz für andere Partikel besteht, um sich zufällig zu bewegen. Wenn ein Feststoff erhitzt wird, schwingen die Partikel stärker, da sie kinetische Energie gewinnen und die Partikel-Anziehungskräfte geschwächt werden. Irgendwann am Schmelzpunkt. Die anziehenden Kräfte sind zu schwach, um die Teilchen in der Struktur zusammen in einer geordneten Weise zu halten, und so schmilzt der Feststoff. Beachten Sie, dass die intermolekularen Kräfte noch da sind, um die Massenflüssigkeit zusammen zu halten, aber die Wirkung ist nicht stark genug, um ein geordnetes Kristallgitter eines Festkörpers zu bilden. Die Partikel werden frei, sich zu bewegen und ihre geordnete Anordnung zu verlieren. Energie wird benötigt, um die anziehenden Kräfte zu überwinden und den Partikeln eine erhöhte kinetische Energie der Vibration zu geben. So wird Wärme aus der Umgebung aufgenommen und das Schmelzen ist ein endothermer Prozess (916H ve). Energieveränderungen für diese physikalischen Zustandsänderungen für eine Reihe von Stoffen werden in einem Abschnitt der Energetics Notes behandelt. Erläuterung unter Verwendung der kinetischen Partikeltheorie von Flüssigkeiten und Feststoffen Beim Abkühlen verlieren flüssige Partikel kinetische Energie und können sich dadurch stärker anziehen. Wenn die Temperatur niedrig genug ist, ist die kinetische Energie der Teilchen unzureichend, um zu verhindern, daß die Teilchen-Anziehungskräfte einen Feststoff bilden. Irgendwann am Gefrierpunkt reichen die Anziehungskräfte aus, um jegliche verbleibende Bewegungsfreiheit (in Bezug auf einen Ort zum anderen) zu entfernen, und die Teilchen kommen zusammen, um die geordnete feste Anordnung zu bilden (obwohl die Teilchen noch eine kinetische Energie aufweisen Muss in die Umgebung entfernt werden, so seltsam wie es scheinen mag, das Einfrieren ist ein exothermer Prozeß (916H ve) Vergleichende Energieveränderungen der Zustandsänderungen Gas ltgt Flüssigkeit ltgt fest 2f (i) Kühlkurve Was passiert mit der Temperatur eines Stoffes Wenn es vom gasförmigen Zustand in den festen Zustand abgekühlt wird. Die Temperatur bleibt während der Zustandsänderungen der Kondensation bei der Temperatur Tc konstant und fällen sich bei der Temperatur Tf fest. Dies liegt daran, dass die gesamte Wärmeenergie beim Abkühlen bei diesen Temperaturen entfernt wird (die latente Hitze Oder Enthalpien der Zustandsänderung), ermöglicht die Verstärkung der Interpartikelkräfte (intermolekulare Bindung) ohne Temperaturabfall. Der Wärmeverlust wird durch die exotherme erhöhte intermolekulare Kraftanziehung kompensiert. Zwischen den horizontalen Zustandsänderungsabschnitten des Graphen sehen Sie, dass die Energieentfernung die kinetische Energie der Teilchen verringert und die Temperatur der Substanz verringert. Siehe Abschnitt 2. für eine detaillierte Beschreibung der Zustandsänderungen. Eine Abkühlkurve fasst die Änderungen zusammen: Für jede Zustandsänderung muss Energie entfernt werden. Bekannt als die latente Hitze. Die tatsächlichen Energiewerte für diese physikalischen Zustandsänderungen für eine Reihe von Stoffen werden in den Energetics Notes näher erläutert. 2f (ii) Heizkurve. Was geschieht mit der Temperatur eines Stoffes, wenn es vom festen Zustand in den gasförmigen Zustand erwärmt wird, so ist die Temperatur während der Zustandsänderungen des Schmelzens bei der Temperatur Tm konstant und bei der Temperatur Tb siedet. Dies ist der Fall, weil die gesamte Energie, die bei diesen Temperaturen (die latenten Hitze oder Enthalpien der Zustandsänderung) absorbiert wird, in die Schwächung der Interpartikelkräfte (intermolekulare Bindung) ohne Temperaturanstieg eindringt. Die Wärmegewinnung ist gleichbedeutend mit der endothermischen, absorbierten Energie, die erforderlich ist, um die intermolekularen Kräfte zu reduzieren . Zwischen den horizontalen Zustandsänderungsabschnitten des Graphen sehen Sie, dass der Energieeintrag die kinetische Energie der Partikel erhöht und die Temperatur der Substanz erhöht. Siehe Abschnitt 2. für eine detaillierte Beschreibung der Zustandsänderungen. Eine Heizkurve fasst die Änderungen zusammen: Für jede Zustandsänderung muss Energie addiert werden. Bekannt als die latente Hitze. Die tatsächlichen Energiewerte für diese physikalischen Zustandsänderungen für eine Reihe von Stoffen werden in den Energetics Notes näher erläutert. SPEZIFISCHE LATENTWÄRME Die latente Hitze für den Zustand ändert feste ltgt Flüssigkeit heißt die spezifische latente Schmelzwärme (zum Schmelzen oder Einfrieren). Die latente Hitze für den Zustand ändert sich flüssiges ltgt Gas wird die spezifische latente Verdampfungswärme genannt (zum Verdichten, Verdampfen oder Kochen) Für mehr auf latente Hitze siehe meine Physik Hinweise auf spezifische Latentwärme Erläuterung mit der kinetischen Partikeltheorie von Gasen und Feststoffen Ist, wenn ein Festkörper, beim Erwärmen, direkt in ein Gas ohne Schmelzen übergeht, UND das Gas beim Abkühlen reformiert einen Feststoff direkt, ohne zu einer Flüssigkeit zu kondensieren. Sublimation in der Regel nur eine physische Veränderung, aber es ist nicht immer so einfach (siehe Ammoniumchlorid). Theorie in Form von Partikeln. Wenn der Feststoff erwärmt wird, schwingen die Teilchen mit zunehmender Kraft aus der zugegebenen Wärmeenergie. Wenn die Partikel genügend kinetische Energie der Vibration haben, um die Partikelpartikel-Anziehungskräfte teilweise zu überwinden, würden Sie erwarten, dass der Feststoff schmelzt. Jedenfalls, wenn die Partikel an dieser Stelle genug Energie an dieser Stelle haben, die zum Kochen geführt hätte, wird sich die Flüssigkeit nicht bilden und der Feststoff wird direkt in ein Gas umgewandelt. Gesamt endotherme Veränderung. Energie absorbiert und in das System aufgenommen. Beim Abkühlen bewegen sich die Teilchen langsamer und haben weniger kinetische Energie. Schließlich, wenn die kinetische Energie der Teilchen niedrig genug ist, wird es den Partikelpartikel-Anziehungskräften ermöglichen, eine Flüssigkeit zu erzeugen. ABER die Energie kann niedrig genug sein, um eine direkte Bildung des Festkörpers zu ermöglichen, d. h. die Teilchen haben NICHT genug kinetische Energie, um einen flüssigen Zustand aufrechtzuerhalten. Insgesamt exotherme Veränderung. Energie freigesetzt und in die Umgebung gegeben. Sogar bei Raumtemperatur-Flaschen feste Iod-Show-Kristalle bilden sich am oberen Ende der Flasche über dem Feststoff. Je wärmer das Laboratorium ist, desto mehr Kristalle bilden sich, wenn es nachts abkühlt Wenn man sanft Jod in einem Reagenzglas hitze, sieht man das Jod leicht erhaben und rekristallisiert auf der kühleren Oberfläche in der Nähe der Oberseite des Reagenzglases. Die Bildung einer bestimmten Form von Frost beinhaltet das direkte Einfrieren von Wasserdampf (Gas). Frost kann auch direkt zurück zu Wasserdampf (Gas) verdampfen und dies geschieht in den trockenen und extrem kalten Wintern der Gobi-Wüste an einem sonnigen Tag. H 2 O (s) H 2 O (g) (nur physikalische Veränderung) Es wird ein solides Kohlendioxid (Trockeneis) beim Abkühlen des Gases auf weniger als 78 ° C gebildet. Beim Erwärmen ändert es sich direkt zu einem sehr kalten Gas. Kondensation von Wasserdampf in der Luft zu einem Nebel, daher seine Verwendung in Bühneneffekte. CO 2 (s) CO 2 (g) (nur physikalische Veränderung) Beim Erhitzen stark in einem Reagenzglas, weißes festes Ammoniumchlorid. Zersetzt sich in ein Gemisch aus zwei farblosen Gasen Ammoniak und Chlorwasserstoff. Beim Abkühlen wird die Reaktion umgekehrt und feste Ammoniumchloridreformen an der kühleren Oberseite des Reagenzglases. Ammoniumchlorid-Wärmeenergie Ammoniak-Chlorwasserstoff T er involviert sowohl chemische als auch physikalische Veränderungen und ist so komplizierter als die Beispiele 1. bis 3. Tatsächlich verwandeln sich die ionischen Ammoniumchloridkristalle in kovalente Ammoniak - und Chlorwasserstoffgase, die natürlich weitaus flüchtiger sind ( Kovalente Substanzen haben im allgemeinen viel niedrigere Schmelz - und Siedepunkte als ionische Substanzen). Das flüssige Teilchenbild steht hier nicht, aber die anderen Modelle gelten abgesehen von Zustandsveränderungen, die eine flüssige Bildung betreffen. GAS Partikelmodell und SOLID Partikelmodell Links. BITTE BEACHTEN, Auf einer höheren Stufe des Studiums. Sie müssen das Gls-Phasendiagramm für Wasser und die Dampfdruckkurve von Eis bei bestimmten Temperaturen untersuchen. Wenn zum Beispiel der Umgebungsdampfdruck kleiner als der Gleichgewichtsdampfdruck bei der Temperatur des Eises ist, kann die Sublimation leicht stattfinden. Der Schnee und das Eis in den kälteren Gebieten der Gobi-Wüste schmelzen nicht in der Sonne, sie verschwinden nur langsam 2 h. Mehr über die Wärmeänderungen bei physikalischen Zustandsänderungen Änderungen des physikalischen Zustands, d. h. Gas ltgt liquid ltgt solid, sind auch von Energieveränderungen begleitet. Um einen Feststoff zu schmelzen oder eine Flüssigkeit zu verdampfen, muss Wärme aus der Umgebung absorbiert oder aufgenommen werden, so dass es sich um endotherme Energieveränderungen handelt. Das System wird erwärmt, um diese Änderungen zu bewirken. Um ein Gas zu kondensieren oder einen Feststoff einzufrieren, muss Wärmeenergie entfernt oder an die Umgebung abgegeben werden, so dass es sich um exotherme Energieveränderungen handelt. Das System wird abgekühlt, um diese Änderungen zu bewirken. Im Allgemeinen, je größer die Kräfte zwischen den Partikeln sind, desto größer ist die Energie, die benötigt wird, um die Zustandsänderung zu bewirken, und je höher der Schmelzpunkt und der Siedepunkt ist. Ein Vergleich der Energie, die benötigt wird, um verschiedene Arten von Substanzen zu schmelzen oder zu kochen (Dies ist mehr für Fortgeschrittene). Die Wärmeenergieveränderung, die in einer Zustandsänderung involviert ist, kann in kJmol der Substanz für einen fairen Vergleich ausgedrückt werden. In der nachstehenden Tabelle 916H ist die Schmelze die benötigte Energie, um 1 Mol der Substanz zu schmelzen (Formelmasse in g). 916H vap ist die Energie, die benötigt wird, um durch Verdampfen zu verdampfen oder 1 Mol der Substanz zu kochen (Formelmasse in g). Für einfache kleine kovalente Moleküle ist die vom Material absorbierte Energie relativ klein, um die Substanz zu schmelzen oder zu verdampfen, und je größer das Molekül ist, desto größer sind die intermolekularen Kräfte. Diese Kräfte sind schwach im Vergleich zu den chemischen Bindungen, die Atome zusammen in einem Molekül selbst halten. Relativ niedrige Energien sind erforderlich, um sie zu schmelzen oder zu verdampfen. Diese Substanzen haben relativ niedrige Schmelzpunkte und Siedepunkte. Für stark gebundene 3D-Netzwerke, z. B. (Iii) und einem Metallgitter von Ionen und freien äußeren Elektronen (m etallische Bindung) sind die Strukturen aufgrund der kontinuierlichen chemischen Bindung in der gesamten Struktur viel stärker. Folglich sind viel größere Energien erforderlich, um das Material zu schmelzen oder zu verdampfen. Aus diesem Grund haben sie so viel höhere Schmelzpunkte und Siedepunkte. Art der Verklebung, Struktur und Anziehungskräfte Betrieb Schmelzpunkt K (Kelvin) o C 273 Energie zum Schmelzen der Substanz Siedepunkt K (Kelvin) o C 273 Energie zum Kochen der Substanz 3a. WAS PASSIERT ZU DEN PARTIKELN, WENN EIN SOLID IN EINEM FLÜSSIGEN LÖSUNG ZU ENTSTANDEN WERDEN Was bedeutet das Wort SOLVENT, SOLUTE UND LÖSUNG, wenn ein Feststoff (der gelöste Stoff) in einer Flüssigkeit (dem Lösungsmittel) auflöst, wird die resultierende Mischung als Lösung bezeichnet. Im allgemeinen: Lösungslösungsmittel gt Lösung So läßt sich der gelöste Stoff in einem Lösungsmittel auflösen, ein Lösungsmittel ist eine Flüssigkeit, die die Dinge auflöst und die Lösung ist das Ergebnis der Auflösung von etwas in einem Lösungsmittel. Der Festkörper verliert alle seine reguläre Struktur und die einzelnen festen Teilchen (Moleküle oder Ionen) sind nun völlig frei von einander und zufällig mit den ursprünglichen flüssigen Teilchen zu mischen, und alle Teilchen können sich zufällig bewegen. Dies beschreibt Salz, das in Wasser auflöst, Zucker, der sich in Tee oder Wachs auflöst, das in einem Kohlenwasserstofflösungsmittel wie Weißgeist auflöst. Es handelt sich in der Regel nicht um eine chemische Reaktion, so ist es in der Regel ein Beispiel für eine physische Veränderung. Unabhängig von den Volumenveränderungen der festen Flüssigkeit, verglichen mit der endgültigen Lösung, gilt auch noch das Gesetz der Erhaltung der Masse. Dies bedeutet: Masse der festen gelösten Masse der flüssigen Lösungsmittelmasse der Lösung nach dem Mischen und Auflösen. Du kannst keine Masse erschaffen oder Geld verlieren. Sondern nur die Masse der Stoffe in eine andere Form umwandeln. Wenn das Lösungsmittel verdampft wird. Dann wird der Feststoff z. B. Wenn eine Salzlösung für eine lange Zeit ausgelassen wird oder sanft erhitzt wird, um die Dinge zu beschleunigen, schließlich Salzkristalle bilden, wird der Prozess Kristallisation genannt. 3b WAS PASSIERT ZU DEN PARTIKERN, WENN ZWEI FLÜSSIGKEITEN VÖLLIG MIT EINEM ANDEREN MISCHEN MISCHEN, WAS DAS WORT MISCIBLE BEDEUTET Mit dem Partikelmodell, um mischbare Flüssigkeiten zu erklären. Wenn sich zwei Flüssigkeiten in ihrer Partikel vollständig mischen, werden sie als mischbare Flüssigkeiten bezeichnet, weil sie sich vollständig ineinander auflösen. Dies ist in der folgenden Abbildung dargestellt, wo sich die Partikel vollständig zuführen und sich zufällig bewegen. Das Verfahren kann durch fraktionierte Destillation umgekehrt werden. 3c WAS PASSIERT ZU DEN PARTIKELN, WENN ZWEI FLÜSSIGKEITEN NICHT MIT EINEM ANDEREN WERDEN, WAS IST DAS WORT IMMISCIBLE WERDEN, WENN DIE FLÜSSIGKEITEN NICHT MISCHEN. Verwenden Sie das Partikelmodell, um nicht mischbare Flüssigkeiten zu erklären. Wenn sich die beiden Flüssigkeiten nicht mischen. Sie bilden zwei getrennte Schichten und sind als nicht mischbare Flüssigkeiten bekannt, die in dem nachstehenden Diagramm dargestellt sind, wo die untere lila Flüssigkeit dichter ist als die obere Schicht der grünen Flüssigkeit. Sie können diese beiden Flüssigkeiten mit einem Trenntrichter trennen. Der Grund dafür ist, dass die Wechselwirkung zwischen den Molekülen einer der Flüssigkeiten allein stärker ist als die Wechselwirkung zwischen den beiden verschiedenen Molekülen der verschiedenen Flüssigkeiten. Zum Beispiel ist die Anziehungskraft zwischen Wassermolekülen viel größer als entweder Ölölmoleküle oder Ölwassermoleküle, so dass sich zwei getrennte Schichten bilden, weil die Wassermoleküle im Hinblick auf die Energieveränderung durch Zusammenkleben begünstigt werden. 3d Wie ein Trenntrichter verwendet wird 1. Die Mischung wird in den Trenntrichter mit dem Stopper auf und der Hahn geschlossen und die Schichten verlassen, um sich auszusetzen. 2. Der Stopper wird entfernt, und der Hahn wird geöffnet, so dass man die untere graue Schicht vorsichtig in einen Becher hineinführen kann. 3. Der Hahn wird dann wieder geschlossen, so dass die obere gelbe Schicht flüssig bleibt, so dass die beiden nicht mischbaren Flüssigkeiten getrennt werden. Anhang 1 einige SIMPLE Partikelbilder von ELEMENTS, COMPOUNDS und MIXTURES GCSEIGCSE Multiple Choice QUIZ auf Zustände von Materiegasen, Flüssigkeiten Ampere Feststoffe Einige einfache Grundübungen von KS3 Wissenschaft QCA 7G quotParticle Modell von Feststoffen, Flüssigkeiten und Gasesquot Multiple Choice Fragen für die Wissenschaft Revision auf Gase , Flüssigkeiten und Feststoffe Partikelmodelle, Eigenschaften, die Unterschiede zwischen ihnen zu erklären. Siehe auch für Gas Berechnungen gcse Chemie Revision kostenlose detaillierte Notizen auf Zustände der Materie zu helfen, zu revidieren igcse Chemie igcse Chemie Revision Notizen auf Zustände der Materie O Ebene Chemie Revision kostenlose detaillierte Notizen über Zustände der Materie zu helfen, überarbeiten gcse Chemie kostenlose detaillierte Notizen zu Staaten von Materie zu helfen, zu revidieren O-Level-Chemie kostenlose Online-Website zu helfen, zu revidieren Staaten der Materie für gcse Chemie kostenlose Online-Website zu helfen, revidieren Zustände der Materie für igcse Chemie kostenlose Online-Website zu helfen, zu revidieren O Ebene Staaten der Materie Chemie, wie man in Fragen auf Staaten zu folgen Der Angelegenheit für die gcse-Chemie Wie gelingt es bei der igcse-Chemie, wie man auf O-Niveau-Chemie eine gute Website für freie Fragen auf Zustände der Materie zu helfen, gcse Chemie Fragen auf Staaten der Materie eine gute Website für freie Hilfe, um igcse Chemie mit pass passieren erfolgreich zu sein revision notes on states of matter a good website for free help to pass O level chemistry what are the three states of matter draw a diagram of the particle model diagram of a gas, particle theory of a gas, draw a particle model diagram of a liquid , particle theory of a liquid, draw a particle model diagram of a solid, particle theory of a solid, what is diffusion why can you have diffusion in gases and liquids but not in solids what are the limitations of the particle model of a gas liquid or solid how to use the particle model to explain the properties of a gas, what causes gas pressure how to use the particle model to explain the properties of a solid, how to use the particle model to explain the properties of a solid, why is a gas easily compressed but difficult to compress a liquid or solid how do we use the particle model to explain changes of state explaining melting with the particle model, explaining boiling with the particle model, explaining evaporation using the particle model, explaining condensing using the particle model, explaining freezing with the particle model, how do you read a thermometer working out the state of a substance at a particular temperature given its melting point and boiling point, how to draw a cooling curve, how to draw a heating curve, how to explain heatingcooling curves in terms of state changes and latent heat, what is sublimation what substances sublime explaining endothermic and exothermic energy changes of state, using the particle model to explain miscible and immiscible liquids GASES, LIQUIDS, SOLIDS, States of Matter, particle models, theory of state changes, melting, boiling, evaporation, condensing, freezing, solidifying, cooling curves, 1.1 Three states of matter: 1.1a gases, 1.1b liquids, 1.1c solids 2. State changes: 2a evaporation and boiling, 2b condensation, 2c distillation, 2d melting, 2e freezing, 2f cooling and heating curves and relative energy changes, 2g sublimation 3. Dissolving, solutions. miscibleimmiscible liquids Boiling Boiling point Brownian motion Changes of state Condensing Cooling curve Diffusion Dissolving Evaporation Freezing Freezing point Gas particle picture Heating curve Liquid particle picture Melting Melting point miscibleimmiscible liquids Properties of gases Properties of liquids Properties of solids solutions sublimation Solid particle picture GCSEIGCSE multiple choice QUIZ on states of matter gases liquids solids practice revision questions Revision notes on particle models and properties of gases, liquids and solids KS4 Science GCSEIGCSEO level Chemistry Information on particle models and properties of gases, liquids and solids for revising for AQA GCSE Science, Edexcel Science chemistry IGCSE Chemistry notes on particle models and properties of gases, liquids and solids OCR 21st Century Science, OCR Gateway Science notes on particle models and properties of gases, liquids and solids WJEC gcse science chemistry notes on particle models and properties of gases, liquids and solids CIE O Level chemistry CIE IGCSE chemistry notes on particle models and properties of gases, liquids and solids CCEACEA gcse science chemistry (revise courses equal to US grade 8, grade 9 grade 10) science chemistry courses revision guides explanation chemical equations for particle models and properties of gases, liquids and solids educational videos on particle models and properties of gases, liquids and solids guidebooks for revising particle models and properties of gases, liquids and solids textbooks on particle models and properties of gases, liquids and solids state changes amp particle model for AQA AS chemistry, state changes amp particle model for Edexcel A level AS chemistry, state changes amp particle model for A level OCR AS chemistry A, state changes amp particle model for OCR Salters AS chemistry B, state changes amp particle model for AQA A level chemistry, state changes amp particle model for A level Edexcel A level chemistry, state changes amp particle model for OCR A level chemistry A, state changes amp particle model for A level OCR Salters A level chemistry B state changes amp particle model for US Honours grade 11 grade 12 state changes amp particle model for pre-university chemistry courses pre-university A level revision notes for state changes amp particle model A level guide notes on state changes amp particle model for schools colleges academies science course tutors images pictures diagrams for state changes amp particle model A level chemistry revision notes on state changes amp particle model for revising module topics notes to help on understanding of state changes amp particle model university courses in science careers in science jobs in the industry laboratory assistant apprenticeships technical internships USA US grade 11 grade 11 AQA A level chemistry notes on state changes amp particle model Edexcel A level chemistry notes on state changes amp particle model for OCR A level chemistry notes WJEC A level chemistry notes on state changes amp particle model CCEACEA A level chemistry notes on state changes amp particle model for university entrance examinations describe some limitations of the particle model for gases, liquids and solidsYet another moving average crossover system Oh, but this one is so much fun This is a trend trading system using very clean charts. Welcher Zeitrahmen (TF) Zwei TFs mit einem Verhältnis von 1: 4 - 1: 6. Zum Beispiel: Ich benutze die H1 und die M15 TFs mit einem Verhältnis von 1: 4. Aber du könntest die H4- und H1-Charts (Verhältnis 1: 4) oder die Tages - und H4-Charts (Verhältnis 1: 6) verwenden. du bekommst das Bild. Jeder, aber ich werde nur GBPUSD, EURUSD oder AUDUSD zu illustrativen Zwecken. Wie bestimmen wir die Richtung des Trends für unsere Zwecke Einfache. Zu einem quotblankquot-Diagramm fügen Sie eine 200 EMAclose0 Verschiebungsanzeige hinzu. Siehe Tabelle 1 unten. Von links nach rechts auf der 200 EMA auf dem H1 GBPUSD Chart ist es klar, dass die Richtung seit dem 7. Oktober aufgestiegen ist, also bis die Richtung der 200 EMA sich merklich ändert, werden wir nur lange Trades nehmen, das heißt , Handelt nur über die weiße 200 EMA-Linie. UPDATE: Ich finde die MA-Kreuzungen sehr gut auf Countertrend Trades auf niedrigeren TFs auch. Einfach nur genauer beobachten und nicht unbedingt so viele Pips wie in einem Trendhandel suchen. Lets Blick auf die H1 EURUSD Chart für die Praxis bei der Bestimmung der Richtung. (Grafik 2 unten) Wieder ist die Richtung seit ca. 7. Oktober gegangen. Gehen Sie durch diese Übung auf andere Paare, um mehr Praxis in der Bestimmung der Richtung zu bekommen. (Hinweis: Wenn Sie von einem höheren TF als H4-Chart handeln, würden Sie die 200 EMA auf diesem höheren TF verwenden, um die Richtung zu bestimmen.) Beenden der Einrichtung des Trading-Diagramms. Zu dem Blinddiagramm mit dem 200 EM A fügen Sie die folgenden geglätteten MAs hinzu: --- 3 geglättet MAclose0 Verschiebung gold --- 8 SmoothedMAclose0 Verschiebung lila Siehe Diagramm 3 im nächsten Beitrag Nachdem das Diagramm eingerichtet ist, stellen Sie sicher, dass Sie die Vorlage speichern. ZUSAMMENFASSUNG DER ZEICHNUNG "Großes Bild für die Richtung kommt aus dem H1-Diagramm (oder höher, wenn ein anderer TF gehandelt wird, aber der Drawdown wird deutlich größer sein, je höher der TF eins ist) Scan für die Richtung von 3,8 geglättete MAs in Bezug auf die gewünschte Richtung. Machen Sie Notizen von Paaren aufstellen oder benötigen Sie spätere Überprüfung, zum Beispiel, wenn sie sich der 200 EMA nähern. Was werden sie tun Bounce aus der 200 und drehen, gehen durch sie, oder gehen Sie es entlang. Das sind die einzigen Entscheidungen. Wenn 3 Kreuze 8 auf höherer TF. Um die TF für die Einreise zu senken. Suche ein starkes Kreuz auf niedriger TF und betritt. Ich überwache den Handel auf dem höheren TF. Aber das ist ein Händler bevorzugt. Angehängte Bilder (zum Vergrößern anklicken) Ich habe Recht mit Ihnen Lawgirl. Sobald Sie über die Angst zu verlieren und Sie können Ihre eigenen Absichten vertrauen, Geld verdienen bei Forex kann einfach und macht Spaß. Heres ein kleiner Umschlag MA Kreuz Vorlage von meinem eigenen, dass ich alle so oft verwenden. Keine Kerzen, folgen Sie einfach der weißen Linie und bleiben Sie auf der rechten Seite des Trends. Wie viel leichter kann es sein Hey forexhard, nett, über dich zu hören, Im sehr neu in FF weil ich gelesen habe, aber nie in das Forum involviert, aber ich werde von nun an seit seiner unglaublichen die Menge an Kwnoledge du kannst aus FF Ich las den Treppenstufen-Thread, ziemlich schönes System aber leistungsstarke, kann nicht warten, um Märkte zu öffnen, nur um es auf Demo natürlich auszuprobieren. Ich dachte, was ist mit einem 100pips SL auf der Suche nach einem 1000pips profit Sounds verrückt lässt skype: elchinoazul Das sieht interessant aus. Auf jeden Fall werden sie in dieser Woche abgerissen. Auch in einer Konsolidierungsphase, wenn Sie beenden, wenn die 3 und 8 Ihre Verluste überqueren wird minimal im Vergleich zu den Zeiten, wenn Sie gewinnen. Plus, es spart auf Verschleiß der Ole Augäpfel Es war ein Kerl hier, der diese Strategie vorschlug: Zitat mit 2 oder 3, und wenn du 50 schlägst, verkaufe zwei und bring den Stoppverlust auf, um zu brechen und das zu lassen Dritter Runquot bis die 3 und 8 wieder kreuzen Es ist eine große Strategie, weil du Gier beseitigt hast. Und der Läufer ist ein Freihandel Das ist eine definitiv eine gute Idee. Verwenden Sie Mikrolots (0.01) oder Minilots (0.1)

No comments:

Post a Comment